
Getting	creative	
with	autoencoders

Tijmen Tieleman,	CEO	&	CTO	at	minds.ai
WiSSAP 2019,	Trivandrum



Overview

• This	is	a	fairly	general	talk
• Application-agnostic
• General	ideas,	rather	than	recent	research

• This	is	a	fairly	specialized	talk
• It’s	about	Deep	Learning
• More	specifically:	representation	learning
• More	specifically:	unsupervised	representation	learning
• More	specifically:	autoencoders



Autoencoders

• Training	objective:	reconstruct	the	input
• Components:	encoder	and	decoder
• Usual	purpose:	representation	learning
• Generative	view:	variational	autoencoders
• Components:	encoder	and	decoder generator

• Flexible
• Get	creative	with	encoder	and/or	generator
• Interpretable	codes	can	be	arranged

• Code	units	are	only	partially	hidden	units



Clustering

• “k	means”
• K	means	as	an	(odd)	autoencoder
• Encoder	(not	NN)
• Generator	(constant	for	each	cluster)

• Implicit	assumption
• More	powerful	generator:	non-trivial	covariance
• Different	implicit	assumption



Clustering	autoencoder
With	free	code	unitsNaïve

With	free	code	units	
and	discretization



Intermission:	a	few	minutes	for	questions	about	the	past	few	slides.



Getting	creative	with	autoencoders

• Clustering	autoencoder
• Ignoring	autoencoder
• Binarizing	autoencoder
• Biased	autoencoder
• Computer	graphics	autoencoder
• Independent	features	autoencoder
• Etc
• Feel	free	to	combine



Ignoring	autoencoder

• Goal:	code	that	ignores	some	information
• E.g.	ignoring	speaker	information	
• E.g.	ignoring	the	spoken	text

• Application:	focusing	on	essentials
• Application:	domain	adaptation
• Application:	anti-discrimination
• Application:	reconstructing	with	different	
information
• Method	1:	provide	that	information	to	the	
decoder
• Method	2:	insist	that	the	to-be-hidden	
information	cannot	be	reconstructed



Binarizing	autoencoder

• Goal:	binary	code
• Application:	”semantic	hashing”
• Application:	extreme	compression	(lossy)
• Method:	use	discretization	noise	on	a	
bank	of	logistic	code	units



Biased	autoencoder

• Goal:	codes	that	tend	to	be	of	certain	
kinds
• E.g.	a	softmax with	2	commonly	used	
units	and	10	rarely	used	ones.
• E.g.	binarizing	and	preferring	sparsity

• Method:	simply	push	in	the	objective



Intermission:	a	few	minutes	for	questions	about	the	past	few	slides.



Computer	graphics	autoencoder

• More	generally:	domain-specific	generator
• E.g.	audio	synthesis	autoencoder

• Goal:	highly	interpretable	codes
• Goal:	help	the	encoder	understand	the	nature	of	
images
• Application:	reverse	rendering,	for	“image	parsing”	
or	as	preparation	for	generating	image	variants
• Application:	using	the	better	encoder	as	a	good	
featurizer
• Method:	replace	the	generator



Computer	graphics	as	generator

• Problem:	it	has	to	be	differentiable
• Solution	1:	implement	a	reduced	CG	system	
in	TensorFlow
• Weakness:	“reduced”	is	unfortunate
• Nice:	it	can	contain	learnables

• Solution	2:	learn	a	second	NN	to	
approximate	a	real	CG	system;	
backpropagate	through	the	approximation
• Weakness:	approximations	are	a	pain
• Nice:	it	has	the	potential	for	full	CG
• The	codes	still	have	to	be	continuous



PoC:	graphics	for	MNIST

• Uses	“capsules”
• Learned	constant:	small	image	
templates
• Learned	function:	free	code	unit	
values	à affine	transformation	for	
the	templates
• Hard-coded	function:	apply	affine	
transformations	to	the	templates
• Affine	transformed	templates	are	
added	together	to	create	final	output



PoC:	graphics	for	MNIST

• Uses	“capsules”
• Learned	constant:	small	image	
templates
• Learned	function:	free	code	unit	
values	à affine	transformation	for	
the	templates
• Hard-coded	function:	apply	affine	
transformations	to	the	templates
• Affine	transformed	templates	are	
added	together	to	create	final	output



Clustering	MNIST

• K	means	clustering	wouldn’t	work	well:	the	generator	is	too	primitive
• We	need	a	more	powerful	generator
• It	has	to	understand	that	a	shifted	image	is	still	about	the	same	image
• Let’s	use	this	computer	graphics	generator

• Unsupervised	clustering	into	25	clusters
• Good	classification	accuracy	with	just	25	labeled	cases





Independent	features	autoencoder

• Goal:	code	components	that	are	
somewhat	independently	
interpretable
• Application:	identifying	the	
patterns	in	the	data
• Application:	generating	data	
variants	with	a	higher	chance	of	
meaningful	results
• Method:	apply	dropout	to	the	
code	components



Independent	features

• This	focuses	on	one	image	
(see	the	central	column)
• This	shows	data	variants	by	
varying	one	feature	at	a	time
• The	8	features	are	clearly	
somewhat	independent
• The	variants	are	meaningful

ß Feature	value	à

ß
Fe
at
ur
e	
in
de
x	
à



Tools	for	crafting	specialized	autoencoders

• Impose	some	structure	on	the	code
• E.g.	clustering	autoencoder,	computer	graphics	autoencoder

• Apply	deterministic	editing	to	the	code
• E.g.	ignoring	autoencoder

• Apply	random	editing	to	the	code
• E.g.	binarizing	autoencoder,	clustering	autoencoder,	independent	features	
autoencoder

• Apply	an	objective	function	addition	to	the	code
• E.g.	sparse	binarizing	autoencoder

• Hard-code	(part	of)	the	generator
• E.g.	computer	graphics	autoencoder



Conclusion

• Creating	custom	specialized	autoencoders	is	doable
• There	is	a	collection	of	basic	tools	for	this
• This	can	improve	interpretability	and	learning	power

• Next	stage	for	DL:	combining	learnable	and	hard-coded	components
• Learnable	components	provide	“intuition”
• Hard-coded	components	provide	the	power	of	computation
• Either	alone	is	quite	limited
• AlphaGo	has	hard-coded	as	main()	and	learnable	as	subroutine
• The	CG	autoencoder	has	learnable	as	main()	and	hard-coded	as	subroutine



Thank	you


