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Overview

* This is a fairly general talk
* Application-agnostic
* General ideas, rather than recent research

 This is a fairly specialized talk

It’s about Deep Learning

More specifically: representation learning

More specifically: unsupervised representation learning
More specifically: autoencoders



Autoencoders

* Training objective: reconstruct the input
* Components: encoder and decoder
e Usual purpose: representation learning

* Generative view: variational autoencoders
 Components: encoder and decoder generator

* Flexible
* Get creative with encoder and/or generator

* Interpretable codes can be arranged
e Code units are only partially hidden units
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Clustering

e “k means”

* K means as an (odd) autoencoder

* Encoder (not NN)
* Generator (constant for each cluster)

* Implicit assumption

* More powerful generator: non-trivial covariance
 Different implicit assumption



Clustering autoencoder

With free code units
Naive With free code units and discretization

Input reconstruction @ut reconstruc@ @ut reconstruc@
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Intermission: a few minutes for questions about the past few slides.



Getting creative with autoencoders

* Clustering autoencoder

* lgnoring autoencoder

* Binarizing autoencoder

* Biased autoencoder

 Computer graphics autoencoder

* Independent features autoencoder
* Etc

* Feel free to combine



lgnoring autoencoder

* Goal: code that ignores some information @J‘ recons“uc@
e E.g.ignoring speaker information L
e E.g.ignoring the spoken text DeCoder N

* Application: focusing on essentials
* Application: domain adaptation
* Application: anti-discrimination Relevant information
. . . . . that the code should C Code j
e Application: reconstructing with different pay no attention to .
information

 Method 1: provide that information to the
decoder Encoder NN

e Method 2: insist that the to-be-hidden
information cannot be reconstructed C
Input j




Binarizing autoencoder

* Goa
* App

* App
* Met

: binary code
ication: “semantic hashing”
ication: extreme compression (lossy)

nod: use discretization noise on a

bank of logistic code units
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Biased autoencoder

e Goal: codes that tend to be of certain
kinds

e E.g. a softmax with 2 commonly used
units and 10 rarely used ones.

* E.g. binarizing and preferring sparsity

* Method: simply push in the objective

@ut reconstruc@
'}

Decoder NN

(o)

Encoder NN

e )

Objective function
addiion that favors
e types of codes
d discourages others




Intermission: a few minutes for questions about the past few slides.



Computer graphics autoencoder

@ut reconstruc@

* More generally: domain-specific generator 5
e E.g. audio synthesis autoencoder

e Goal: highly interpretable codes
e Goal: help the encoder understand the nature of

Images C Code J

Computer graphics system

e Application: reverse rendering, for “image parsing” 3
or as preparation for generating image variants

* Application: using the better encoder as a good Encoger NN
featurizer

* Method: replace the generator C n j
put




Computer graphics as generator

@ut reconstruc@

* Problem: it has to be differentiable t

* Solution 1: implement a reduced CG system
in TensorFlow
e Weakness: “reduced” is unfortunate

* Nice: it can contain learnables C Code J

e Solution 2: learn a second NN to t
approximate a real CG system;
backpropagate through the approximation

* Weakness: approximations are a pain

* Nice: it has the potential for full CG C Input j
 The codes still have to be continuous

Computer graphics system

Encoder NN




PoC: graphics for MNIST

e Uses “capsules”

* Learned constant: small image
templates

e Learned function: free code unit
values = affine transformation for
the templates

* Hard-coded function: apply affine
transformations to the templates

» Affine transformed templates are
added together to create final output
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PoC: graphics for MNIST

e Uses “capsules”

* Learned constant: small image
templates

e Learned function: free code unit
values = affine transformation for
the templates

* Hard-coded function: apply affine
transformations to the templates

» Affine transformed templates are
added together to create final output
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Clustering MINIST

* K means clustering wouldn’t work well: the generator is too primitive

 We need a more powerful generator
* |t has to understand that a shifted image is still about the same image
* Let’s use this computer graphics generator

* Unsupervised clustering into 25 clusters
* Good classification accuracy with just 25 labeled cases
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Independent features autoencoder

@ut reconstruc@

* Goal: code components that are J
somewhat independently Decoder NN
interpretable @mew';%‘ d‘;ama@

e Application: identifying the
patterns in the data Propout

* Application: generating data C Code j
variants with a higher chance of §
meaningful results Encoder NN

* Method: apply dropout to the

code components C Input j




Independent features

* This focuses on one image
(see the central column)

* This shows data variants by M
varying one feature at a time

* The 8 features are clearly
somewhat independent

* The variants are meaningful
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Tools for crafting specialized autoencoders

* Impose some structure on the code
e E.g. clustering autoencoder, computer graphics autoencoder

* Apply deterministic editing to the code
e E.g.ignoring autoencoder

* Apply random editing to the code

* E.g. binarizing autoencoder, clustering autoencoder, independent features
autoencoder

* Apply an objective function addition to the code
* E.g. sparse binarizing autoencoder

* Hard-code (part of) the generator
* E.g. computer graphics autoencoder



Conclusion

* Creating custom specialized autoencoders is doable
* There is a collection of basic tools for this
* This can improve interpretability and learning power

* Next stage for DL: combining learnable and hard-coded components
* Learnable components provide “intuition”
e Hard-coded components provide the power of computation
* Either alone is quite limited
* AlphaGo has hard-coded as main() and learnable as subroutine
* The CG autoencoder has learnable as main() and hard-coded as subroutine



Thank you



